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Preface
Many current fighter aircraft utilize thin delta wings with forebody strakes, which
produce strong vortical flows at modrrate 1o high angles of attack. The resulting lift incre-
ment is highly nonlinear and cannot be aécurately predicted by current design methods,
The objectve of this thesis is to calculate the flow over a cranked delta wing using the
thin-layer Navier-Stokes equations. Emphasis is placed on deterrnining‘the effects of the
strake vortex on the wing vortex and the ability of the. code to reprcduée the secondary
vortex stnjcture.
| The algorithm used in this study was the ARC3D code, written by Dr. Thomas
Pulliam of the NASA Ames Research Center. It has been extensively modified by Dr.
v‘lshilip Webster of the Flight Dynamics Laboratory. The calculations were done using the
CDC Cyber and Cray XMP-12 computers at Wright-Patterson AFB, Ohio.
~ I'would like to vthank Dr. Joseph Shang, of the Flight Dynamics Laboratory, not
only for his financial support but also his technical and moral support. I would also like to
thank Dr. ~Phﬁip Webster for his patiencefz;ch‘l technical expertise on the ARC3D computer |
codc. I would like to thank Dr. Halim for his support of this effort. Finally I would iike to
thank my biggest supporter, my wife_ who was always there when I needed her.
* This thesis was prepared using a Macintosh Plus computer using Microsoft Word
WO;d processing software and Expressionist equation writing software. It was printed

using an Apple Laschﬁtcr Plus printer.
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Abstract

For thin, highly swept wings operating at moderate to high angles of attack, the’
flow over the wing is dominated by ihéwfonnanon of leading edge vortices. These vortices
produce a minimum prcssure/ﬁ\d tfns resuits in an additional lift increment. :ﬁns lift in-
crement is nonlinear with angle of attack and cannot be accurately predicted using present
design methods. .

The'thin-layer Navier-Stokes equations were used to calculate ihéjtl/ow over a
straight delta wing and a cranked delta wing. The straight delta wing was used as the test
case due to the availability of both experimental and numerical data. Results are compared
with this data in order to validate the numerical procedure. The computer code uses an im-
plicit, time marching algorithm developed by Beam and Warming. The solution is marched
in time until a steady state is achieved. The code is approximately factored and diagonal-
ized in order to reduce compugtional work. A solid state disk is used in order to allow for
the large grid needed for an;necdlmenmonb solution. -

The fglin-layer Navier-Stokes equations are capable of accurately calculating vortical
flows. The cranked delta wing exhibited flow similar to a straight delta wing upstream of
the crank. The vortex gcnerat_ed at the crank quickly became paired with the vortex from
the front gf the wing. %é?}oﬁex location aft of the crank changes with streamwise loca-
tion. ’Ehc/gnd resolution is important when trying to calcuiate vortical ﬂows“;due to the
large gradlient.s in both the ;p/anwisc and normal directions. The solid state disk can be

used to run prvblems that require more computer memory than is available. Optimization

of the program input/output should be done for running the code with the solid state disk in- ‘

o -
drder to reduce the central processor unit time and job cost. b
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THIN-LAYER NAVIER-STOKES SOLUTIONS FOR A CRANKED DELTA WING

IIntroduction

The current class of high performance fighter aircraft must be able to operate over a
wide range of flight conditions. A single point design aircraft is no longer acceptable.
They must have efficient supersonic cruise performance and yet be abie to maneuver
transonicly for dogfighting. The supersonic requirement has driven aircraft designers to
use thin, highly swept wings. Although these are desirable for cruise performance, they
greatly degrade the maneuverability of the aircraft. This performance degradation is caused
by flow separation at moderate to high angles of attack. This difficulty in maintaining
attached flow, has led designers to explore the possibility of using vortex lift for maneuver
enhancement (1:20).

Current fighters, such as the F-16 and the F-18, utilize vortex lift to enhance their
performance by the use of wing-strake planforms. The strakes generate strong vortices,
which sweep back over the wing and generate a significant increase in lift. This Lift
increment is a result of the decrease in pressure on the upper surface. It is highly nonlinear
and cannot be accurately predicted using current linear design methods.

Newsome and Kandil (2:2-3) have classified the flow over a body into four general
categories. The first category is for attached flow which occurs at low angles of attack.
The second category, for moderate to high angles of attack, is identified by the formation of
large vortices on the lee-side ot delta wings, swept wings, low aspect ratio wings, and
slender bodies. A typical flow pattern is shown in Figure 1. The flow is dominated by the
large primary vortices generated at the wing leading edge. In addition, a secondary vortex
is formed because the spanwise flow is unable to negotiate the adverse pressure gradient.
The vortices in this region are both stable and symmetric and it is for this reason that most

of the research done on vortex flows has been in this region. The third category of flow is
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Figure 1. Vortex Flow Over a Delta Wing (3)




for very high angles of attack. The flow in this region produces either unstable or

asymmetric vortices. The vortices may burst or become asymmertric, producing large
changes in the body forces and moments. This region can be <haracterized as a ransition
region from steady stable vortex flows to unsteady, asymmetric flows. The majority of the
research in this area is related to predicting vortex breakdown or vortex asymmetry. The
final region is for extreme angles of attack. The flow is characterized by an unsteady
diffuse wake that may produce vortex shedding. This area is not of much interest, since
most flight vehicles are not likely to operate in it.

For sharp delta wings, Stanbrook and Squire (4) have shown that the flow can be

classified according to the normal Mach number (Mp) and the normal angle of attack.(ctp),

given by
M, = M.V 1 -sin?A cos2a. (1)
oty = tan~! (Lan_g.) Q)
cos A

where A is the wing leading edge sweep, a is the angle of attack, and M is the freestream .
Mach number. The Stanbrook-Squire boundary classifies leading edge flows into either
separated flows or attached flows depending upon whether the normal Mach number is less
than or greater than one.

Miller and Wood (5) have refined this boundary and identified six possible types of
flow, which are shown in Figure 2. For normal Mach numbers less than one and small
angles of attack, the flow is characterized by a separation bubble at the leading edge. As
angle of attack is increased the flow separates at the l:ading edge and forms a vortex, which
is often referred to as "classical leading-edge separation” (2:3). Normally a secondary

vortex will form under the the primary vortex. This is due to the spanwise flow being _
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unable to negotiate the adverse pressure gradient, thus separating from the wing surface.

For normal Mach numbers greater than one, there are three types of flows possible. At low
angles of attack the flow is attached and the leading edge expansion is terminated by a
crossflow shock. With increasing angle of attack the shock strengthens and causes the
formation of a shock induced separation bubble in board on the delta wing. Further
increase in angle of attack causes the strengthing of a thin separation bubble with a
crossflow shock coalesced on top of it. The final category of flow occurs for very high
angles of attack, with either subsonic or supersonic normal Mach numbers. This flow 1s
characterized by strong leading edge vortices and strong crossflow shocks.

Methods which predict vortical flows can be generally classified into two
categories. The first category models the vortex in an approximate manner and includes
such methods as the Polhamus suction analogy, vortex lattice methods and panel methods.
The second category captures the vortex as a solution to the governing equations and
includes Euler solutions and Navier-Stokes solutions. The suction analogy (1,6) is an
empirical method which can predict forces and moments but is unable to predict pressures
and velocities. Vortex lattice methods (7-8) are able to predict pressure and velocities by
modeling the vortex sheet as discrete line vortices. In panel methods (9-13) the vortex
sheet is more accurately modeled, but prior knowledge of the vortex structure is required
(14:825-826). The Euler solutions (15-19) can reproduce the primary vortex but are unable
to reproduce the secondary structure. Although the Navier-Stokes solutions (20-25)
reproduce all facets of the flow, they have the drawback of being difficult to obtain and
computationally expensive.

Most of the early research done on vortical flows used one of the methods that
approximately modeled the vortex core. As the speed and size of computers increased,
Euler and Navier-Stokes solutions became more feasible. The Euler equations have the

advantage of being simpler to solve than the Navier-Stokes equations. The major
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disadvantage to using the Euler equations to model vortical flows is, that an inviscid

approach is used to model a predominatly viscous phenomenon. The Euler equations can
only capture the primary vortex and it is for this reason that the Navier-Stokes equations are
chosen as the governing equations for this investigation.

The objective of this research is to use the Navier-Stokes equations to calculate the
flow over a cranked delta wing. A partial listing of the available experimental data is
contained in References 25-31. The configuration chosen corresponds to that tested by
Henke (31). This configuration was chosen because its sharp leading edges and flat upper
surface, will produce a strong vortex which is free of body influences. The test conditions
are for a freestream Mach number of 2.5 and an angle of attack of 10°.

The solution of the full Navier-Stokes equations requires a substantial amount of
computing resources, therefore the following assumptions were made. The first was that
the viscous effects are only significant in a thin layer near the body. The viscous
derivatives normal to the body are large compared to the viscous derivatives along the
body, as long as the flow is attached or only mildly separated. The only viscous

derivatives retained are those normal to the body and the resulting equations are known as

the thin-layer Navier-Stokes equations (32:9). The second assumption was that the flow
was laminar. Although this may seem restrictive, the laminar numerical results of Rizzetta
and Shang (33) and Buter and Rizzetta (34) were in good agreement with experimental
data. The laminar flow assumption appears to be valid for freestream Reynolds numbers
up to about one million.

The computer code used is the ARC3D code written by Dr. Thomas Pulliam of the
NASA Ames Research Center (32). The code is based on the Beam and Warming implicit
approximate factorization algorithm and uses the thindayer approximation. It has been
modified by Dr. Phil Webster of the Flight Dynamics Laboratory. The most significant
coding change has been the incorporation of boundary conditions that allow for a branch




AN G B EASGAT 2EEE e e Rt fu el b ose eait D ol e . A i ? g " . ————

cut, between the upper and lower body surfaces. This allows for the use of an H-grid
topology which gives better modeling of the sharp leading edge.

This version of the code has never been run on the Cray XMP-12 computer at
Wright-Patterson AFB. Before the cranked wing calculations could be performed, the code
and hardware needed to be checked. This was done by running a test case for which
experimental and numerical data were available. The test case corresponds to the
configuration tested by Monnerie and Werle (35). Available numerical data includes the
full Navier-Stokes calculations of Rizzetta and Shang (33) and Buter and Rizzetta(34), and
the conical solutions of Thomas and Newsome (36) and Vigneron, Rakich, and Tannehill
37N.




The time-dependent compressible Navier-Stokes (NS) equations describe the con-

servation of mass, momentum, and energy for a flowing fluid. Ignoring body forces and
external heat addition, the equations can be written in non-dimensional, strong conserva-

tion-law form as

AQ +%E +3,F +3,G = L {3 E, +3,F, +3,Gy) 3)

pu
Q=] pv @)
pw

pu pv [ pw
puu+p puv puw
E={| puv F pVV+D G=| pvw S)
puw pvw pPWW+p
(e+p)u (e+p)v | (e+p)w

Ev=

Tyx
Fv = Tyy (6)
Tyz

[ UTyx + VTyy + WTyz —Qy |




| UTpx + VT + WTz —q;

where

Txx = Alux + vy + Wz) + 21uy

Tyy = Aux + vy + W2) + 2vy

Tz = MUy + vy + W) + 2uw,
Try = Tyx = H(uy + Vy) ™
Txz = Tox = Uz + Wy)

Tyz = Tzy = H(vz + Wy)

= 91:-92&_3_{(7-1)% __YHe
e ox Pr ox|” R Pr ox
gy =~ £=_Ee_&i[(v—1)e{=_mgﬁ ®
’ dy Pr oyl R | Pr dy
qz=-k£=_99_*£§_[(¥—l)e‘ __YMe
oz Pr dz|” R Pr &
°i=g"§'(uz+vz+w2) 9)

The equation of state is used to close the system of equations. For a perfect gas, it can be

expressed in terms of the internal energy and the density as

p=(r-1)pe; (10)




The molecular viscosity (i) is related to the temperature through Sutherland's formula and

has the units of kg/(m-s)

= -6_ T3
H = 1.458(10) L (11)

The preceding equations have been nondimensionalized using the following relations

*=L Y=L =T

u=L v=l w= (12)
Pl Pudl (L/a.)

=£ =p—‘- Re:p-a-’L

. Hoe P e Hee

where the dimensional variables are denoted by an asterisk, freestream conditions by ee,

and L is the body reference length. Stokes's hypothesis is used to relate A to 4 with A
equal to -2/3 u (38:160-161).
Coordinate Transf :

In order to make the governing equations applicable for arbitrary geometries, they

are transformed into generalized coordinates (£,1,5,t) by means of the following transfor-

mation

T=t

€ =E&(x,y,z.1)
N =n(x,y,zt) (13) .
£ =L(x.y,zt) %

; -~
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Pulliam (38:160-161) has shown that the transformed equations written in strong conser-

vation-law form and in terms of the contravariant velocities (U,V,W) are given by

3:Q +%E +nF +9:G = L(3E, +3qF, +3,G.) (14)
p
~ pu
Q=I-1| pv (15)
pw
¢
r pU A - pv = - pw A
puU + &p puV +nyp puW + L,p
E=J1 va-}-gyp F=J1 pvv...-nyp G=J! pVW+Cyp (16)
pwU + E,p pWV +1p pwW +C,p
| (e+p)U +&p | | (e+p)V +np | _(e+p)W + Gip |
_ o .

Extxx + E.;ytxy +&1Txz
ﬁ" =J! &xtyx + éytyy + éztyz
ExTax + éytzy + &1z
L SxBx +EBy + &P
B 0 ]
MxTxx + NyTxy + NzTxz
Fo=I" | nety + MyTyy + Natye a7

NxTax + NyTzy + NzTaz
L MaBx+ NyBy + NBz




- 0 s

CxTux + Cytxy + 8tz
G =1-1

Gy=J CxTyx + Cyfyy + Cztyz
CxTax + CyTay + CiTzz

L CxBx + CyBy + 0B

Bx = YHPr ! Ogei + utyx + Viyy + Wiy,
By = YUPr~! dye; + utys + v,y + W1y, (18)

Bz= YUPr! 9,ei + uTyy + vy + WTp

U=§ +&u+&yv+E,w
V= +ngu+Nyv+n,w (19)
W= +Cu+lyv+l,w

The details of the transformation to generalized coordinates is contained in Appendix A.

Thin-I ! o
The thin-layer approximation applied to the NS equations consists of neglecting the
viscous derivatives parallel to the body and retaining the derivatives normal to the body.
This is reasonable for high Reynolds number flows, as long as the flow is attached or only
mildly separated (38:160). The approximation assumes that the body is mapped on to a
g=constant plane, and the viscous derivatives in the ¢ and 7| directions are neglected. All the
convective terms are retained along with the unsteady terms. Applying the thin-layer
approximation to Equations 14-17, Pulliam and Steger have shown that the equations can

be written as

BtQ + a;’E 4 anF + BCG = R—ea;S (20)




where Q, E, F, and G are the same as before. The viscous flux terms parailel to the body

are neglected (3¢E, = dnF, = 0) and the viscous flux term normal to the body is given by

0

pmyug + (1/3)my Gy

w)
]

L
L

pmyvg + (/3)maly 1)

pmywy + (/3)mg,

| pmym3 + (1/3) momy |

my = C:zn + C§ + QZ
mp = Cxu§ + Cch + CZW§

m;3 =%8§(u2 +v2 + w2) + YPr1oges) @2

The thin-layer Navier-Stokes (TLNS) equations are a mixed set of hyperbolic-
parabolic partial differential equations (PDE) in time. These have the same form as the NS
equations, and can be solved using the same type of methods. If the unsteady terms are
dropped, the equations become a mixed set of hyperbolic-elliptic equations. These equa-
tions are more difficult to solve and therefore most solutions for the compressible NS
equations have used the unsteady form. The steady-state solution is obtained by marching
the solution in time until converged, and is known as the time-dependent approach. The
time-dependent approach can be explicit or implicit and is usually second-order accurate in
space. If time accuracy is desired, the algorithm should be second-order accurate in time.
For steady-state calculations, a first-order accurate algorithm can be used to accelerate con-

vergence (39:424,482).




Boundary Conditi

The pressure at the body surface can be found using a normal pressure momentumn

relation. Pulliam has shown (38:161) by combining the three transformed momentum

equations, the normal pressure is given by

PolC + G2+ 02) = plBck, + udLy + vALLy + W)~
PU{Cxug + Gyve + Lawg) — pV(Gattn + Lyvg + Lowy)  (23)

and the Cartesian velocities can be determined from

‘; =J! '(ﬂsz - nsz) (ExCZ - E.szx) -(ﬁm: - §znx) V-n (24)
(ﬂny - T\ny) ‘(§x§y - éygx) (éxﬂy - éynx) -G

[ u ] (ny‘:z - nsz) —(inz - ngy) (&yﬂz - gzﬂy) U-&
The above expressions are valid for inviscid or viscous flows and for steady or unsteady
body motion.

The no slip boundary condition is specified at the body surface, where U=V=W=(
and u,v, and w are determined from Equation 24. In the case of a stationary grid where
&=m=(:=0, u,v, and w are zero. The surface pressure is calculated by integrating
Equation 23. For viscous flow over a stationary grid, Equation 23 reduces to the pressure
gradient normal to the surface being zero (P,=0). The body is assumed to be adiabatic
(Ty=0) and the density is found by linear extrapolation from the point above. The farfield
boundary conditions are specified to be freestream values, except for the downstream
condition. A first-order extrapolation was used as the downstream boundary condition. A

plane of symmetry was imposed at the centerline.of the body, where




—_—=am—=—t—=—=v=0 aan=0 (25)

Explicit boundary conditions are used for their ease in application.




III Numerical Procedure

The numerical procedure used to obtain solutions of the governing equadons is out-

lined. Topics include the choice of algorithm, and formulation of the finite-difference equa-
tions. Emphasis is placed on detailing the simplifications used (approximate factorization
and diagonalization) and their impact on code efficiency and accuracy. The implementation
of the nonlinear dissipation model is discussed. The solution process for one time step is

outlined for running the code, in core or out of core with the Solid-State Disk (SSD).

Implicit Tj ing Al

A time marching finite-difference scheme, developed by Beam and Warming
(40:118-120), is used to solve the thin-layer Navier-Stokes equations. This is an alter-
nating-direction implicit (ADI) scheme and is similar to schemes developed by Lindemuth
and Killeen (41) and McDonald and Briley (42). The scheme uses an implicit, three-point,

me-differencing formula in the form

AQ" —ﬁ-Ali( o)+ AL at(Q (AQ“ ‘)+o{(ﬁ L_ofadf+(arf ](26)

the parameters ¥ and ¢ can be chosen to produce a scheme which is either first- or second-

order accurate in time. Since we are primarily interested in steady-state solutions, a first-

order scheme is chosen. If 9=1 and @=0, this results in the Euler implicit scheme (39:490)

AQ" = At %(Aﬁ“) + Atgt—(ﬁn) + 0[(At)2] 27

and AQ" = QMI -Q", thus Equation 27 can be rewritten as

AQ" —At—(Q”*‘) =0 28)

l6




Writing Equation 20 at the n+1 time level yields

atarn-l = —agﬁnﬂ _ani?‘nﬂ _acem»l + i{]'c_ag’s‘nﬂ (29)

Finally, substitution of Equation 29 into Equation 28 yields

AQ" + AAE™ +3,F" + 38" - L a8 =0 30)

Linearization
For Equation 30 to be solved for Q the flux vectors, E, F, G, and S, which are
nonlinear functions of Q, must be linearized. The inviscid flux vectors can be linearized in

time by using a Taylor series about Qn (32:12):

an
E™ =E"+ __ggn AQ"=E"+A"AQ"
an
Frft s afn AQ"=F"+B"AQ" (31)

Steger has shown (43:3-4) that the viscous flux vector can be linearized using a Taylor

series and is given by

~

an
s"”‘=s“+J'I%JAG“=S“+J-‘M“JAQ“ (32)
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The flux Jacobians are given in Appendix B. Substituting Equations 31 and 32 into

Equation 30 yields the "delta form” of the algorithm

[I +A:a§K“ + A, B" + At&;é" - Re‘lAtagl“lVl"J] AQ" =
—AOE" + 04F" + 9,G" ~Re~19,5") (33)

In Equation 33 that the left-hand-side contains the unknown AQ and is sometimes
referred to as the "implicit” part. The right-hand-side contains the known quantities and is
referred to as the "explicit” part (32:13). Applying second-order, central-difference oper-

ators to equation 33 yields the final form of the time marching algorithm:

[1+At5:A™ + At8yB” + At5C" ~Re~1At5J-'M"1| AQ" =
—At(Sgﬁ" +8F" + 8;6" ~Re-! 8g§") (34)

Approximate Factorization
To integrate the full three-dimensional operator would be prohibitively expensive.
One simplification that can be used is to approximately factor the three-dimensional oper-

ator into three one-dimensional operators. If terms on the O(At?) are neglected the left-
hand-side of Equation 34 is factored into (32:79)

[1+At8eA"][1 + A3, B"][1 + At8(C" - Re~1At5¢I-'M"1|AQ" (35)

Neglecting the O(At2) terms will not degrade the accuracy of the scheme since it is first

order accurate in time. Equation 34 can now be written using approximate factorization as

[14+ AtBEA™][1+ 88,87 [1 + At8,C" — Re-1At8¢I-1M"1]AQ" =
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_At(ﬁéﬁn + Sni‘:n + 8;6" ~Re-! 5g§n) 36)

The approximate factorization reduces the (Jmax-Kmax-Lmax-5) x (Jmax-Kmax-Lmax-5)
banded matrix down to a set of three block tridiagonal matrices. The size of any matrix is
now at most (max | Jmax,Kmax,Lmax |-5) x (max | Jmax,Kmax,Lmax |-5). The solution
now consists of three sweeps, one in the & direction, one in the 1 direction, and one in the
{ direction. Each block tridiagonal matrix can be solved using a block lower-upper decom-

position (LUD) (32:17).

Diagonalizati

Approximate factorization was used to reduce the block three dimensional implicit
operator of Equation 34 down to three one-dimensional block tridiagonal matrices. The
solution of these matrices are still computationally complex, since they involve the solution
of 5x5 blocks. One way to decrease the work is to decouple the equations. If the operators
are diagonalized, the block structure is decomposed into five scalar operators.

Diagonalization of the Euler equations is presented and then the method is extended
to the Navier-Stokes equations. This is due to the fact that " the viscous flux Jacobian Mn
is not simultaneously diagonalizable with the flux Jacobian Cn (32:19)." Warming, Beam.
and Hyett (44:1037-1041) have shown that the inviscid flux Jacobians can be diagonalized
since they have real eigenvalues and a complete set of eigenvectors. The flux Jacobians are
written in terms of their eigenvalues and eigenvectors as

~1\n

A" = (TeAeT;

B" = (TqA,T7 )" 37

an ~-1in
¢ =(T§A§T§
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where T¢ is the eigenvector matrix of A and likewise, Ty, for B, and T¢, for C. The eigen-
vector and eigenvalue matrices are written out in Appendix C. Equation 36 can now be

written neglecting the viscous flux Jacobian as

[(Tg'rg‘)" + ABYTALT; ][(THT;\‘)" + Ats,,(T,,A,,T;‘ﬂ

[T T + androact; Tla@" =R" 68)
where
R™ = ~A(8eE" + 84F" + 8(G" -~ Re16¢8") (39)

The eigenvector matrices are factored outside of the difference operators and this yields the

"diagonal” form of the algorithm.

THI + ASAZN"[T + AtB AR P 1 + AT [ aQ" =R (40)
where
W =(rg'r,)"
P =(ryir)" “h)

Since the eigenvector matrices are functions of &,1, and {, factoring them outside
of the operator introduces an error. Pulliam and Chaussee (45:356-359) have shown that

for steady-state solutions, the accuracy of the solution is not affected. The reason being,

for steady-state solutions AQ approaches zero. Since the right-hand-side is unchanged by
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the diagonalization the error is determined by the order of the differencing chosen. They
have also shown the time accuracy of the algorithm to be at most first-order.

The above discussion only applies to the Euler equations since the viscous flux
Jacobian has been neglected. To extend diagonalization to the Navier-Stokes equations,
Pulliam suggests (32:20) including a diagonal term on the implicit side to approximate the

viscous Jacobian eigenvalues. The current estimates are

A(e) = pure-13-1(e2 + €2 + £2)
Av(n) = puRe13-1{ng + 13 + n2) 42)
)\V(g) = p“Re_IJ-I(Ci + Cy + Cz)

For the thin-layer approximation the £ and 1 terms are ignored and the A, () term is added
to the Ay eigenvalues.

\nificial Dissipati

By the use of linear stability analysis, it can be shown that the diagonalized algo-
rithm, Equation 40, is unconditionally stable. In reality this is not true, especially when the
system is nonlinear. "Scales of motion appear which cannot be resolved by the numerics
and are due to the nonlinear interactions in the convection terms of the momentum
equations (32:26)."

One way of dealing with these numerical instabilities is to add some numerical
dissipation to the algorithm which does not alter the accuracy of the solution. The dis-
sipation model chosen is a mixed second order, fourth order model due to Jameson (46).

The nonlinear model for the { coordinate is given by

2
Dy = Vﬁ("ka kst * OikTx 1)(5§ 21 —§; k.lACVCAQ)J 43)

21




where

2
£§.12.x = K24t max(l‘j.k.m,r ikl j.k.l-l)

Yo = [Pikie1 = 2Pkl + Pikii|
M Pikaer + 2Py + Pika]

(44)

4 _ (2)
€iki= max(O. K4At—¢ ik

2,2 20N
Ojx1 =|W|+ a(Cx +8y + Cz)

and © is the spectral radius scaling for C. V¢ and A are the first order accurate backward
and forward difference operators. Typical values of the constants X; and x4 are .25 and
.01, respectively. Similar terms are used for the £ and 1 directions. Applying this model
to both the implicit and explicit sides of Equation 40 yields

Y1 + AtdAR - ADGI|N"[I + AtByAD ~ ADLB"E + AtseAl - aeDl][T7 [ 40"

~AYSEE" + 8,F" + 8;G" - Re~15;8") - (Dg + Dy + D)Q"  (45)

Since the dissipation is a fourth order model, this necessitates the use of scalar penta-
diagonal solvers. Although pentadiagonal equations are more complicated to solve than
tridiagonal equations, the use of implicit dissipation improves convergence and "robust-

ness" of the algorithm (47:16).

Solution Procedure
Since the algorithm makes use of approximate factorization, the solution can be

obtained by sweeping in the &1, and { directions sequentially. The solution process
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becomes a series of matrix-vector multiplies and solutions of scalar pentadiagonal equa-
tions.This process consists of the following eight steps at each time level.

1. A matrix-vector multiplication at each grid point.
~ ~1\nfan ~n
§, = ('ré [R™ - (Dg + Dy + D]
2. The solution of five scalar pentadiagonal equations for the & direction.
S =1+ AtsgAl - AtDEI[ 'S,
3. A second matrix-vector multiplication at each grid point.
$; =[RS,
4. The solution of five pentadiagonal equations,this time in the 1 direction.
~ n .
Sa=[1+At8 A} - ADAI] 'S5
5. A third matrix-vector multiplication at each grid point.
§S = (ﬁ-l)n §4
6. The solution of five scalar pentadiagonal equations, in the { direction.
-~ n _1 ~
Ss =1+ At3eAT - AtDI[ ™' ;s
7. The final matrix-vector muitiplication at each grid point.
I\n ~
AQ = (Tc)n S6

8. The solution is then updated by

ﬁnﬂ - (’in + Aan
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The calculations were done on a Cray XMP-12 computer using a Solid State Disk
(SSD). The SSD was used because of the large grid and large amounts of storage required
for the solution of a three dimensional problem.

The solution process using the SSD, entails two sweeps of the domain for each
time step. The first sweep is for planes of constant 1 (k planes), where the differencing in
the { direction is done. The second sweep is for planes of constant { (1 planes), where the
€ and 1 differencing is done.

The SSD is set up with two working files. The first file contains the metrics and
the second file contains the flow variables. At each plane the metrics and the flow variables
are read into the in-core memory. The calculations are carried out and the updated flow
variables are loaded back on to the SSD. There is no need to unioad the metrics since they
are invarient with time. The algorithm advances to the next plane and the process is
repeated.

Using the SSD is one way of running problems which require more core memory
than may be available. The trade off is that the code is not as efficient as a code that runs
totally in core. Appendix D contains a comparison of Central Processor Unit (CPU) times,
input/output (I/O), and storage required to run the code in core and out of core using the

SSD.




IV Results and Discussi

The diagonalized algorithm is used to calculate the flow over a 75° delta wing and a
80°/69° cranked delta wing at angle of attack. The delta wing calculations are compared
with the experimental data of Monnerie and Werle (35) and the numerical results of Buter
and Rizzeua (34). The cranked wing solution is compared with experimental data of Henke
(31). The calculations were done on the Cray XMP-12 computer at Wright-Patterson Air
Force Base (AFB), Ohio. The information and files required to run this code at the Air
Force Institute of Technology, are contained in Appendix E.

Delta Wing

Since this version of the code had not been previously run using the Cray at
Wright-Patterson AFB, it was necessary to insure there were no hardware or system
software incompatibilities. A 75° delta wing at a freestream Mach number of 1.95 and
angle of attack of 10° was chosen as the test case. This configuration was tested by
Monnerie and Werle (35) and the model geometry is given in Figure 3. Numerical
solutions using the full Navier-Stokes equations and the conical approximation to the
Navier-Stokes equations are contained in references 31-34. Comparisons will be made
with the experimental data and with the numerical results of Buter and Rizzetta (34).

Due to the simple geometry of the delta wing, the grid was generated using an
algebraic grid generator. The grid consisted of 30 points in the streamwise () direction,
55 points in the spanwise (1) direction and 65 points in the normal () direction. A typical
streamwise grid plane (n,{) is shown in Figure 4. The grid incorporates a branch cut
between the upper and lower body surfaces to allow for the use of an H-gnd. This
approach was used to eliminate the small radius of curvature of the grid, at the wingtip, that
results from using a C grid. Since the freestream Mach number is supersonic, the upstream
propagation of disturbances is extremely limited. This implies that there is no requirement
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for a wake region and the domain ends at the wing trailing edge. Orthogonality is not
enforced at the boundaries, but previous work (33,34) has shown that good resuits can be
obtained using this approach. Points were clustered in the high gradient areas such as, the
nose, the wingtip and at the body surface, by the use of exponential functions.

Figure 5 shows the comparison of Pitot pressures with the experimental data.The
Pitot pressures have been normalized by the freestream Pitot pressure. The thin-layer
Navier-Stokes calculations show good agreement on the location and the strength of the
primary vortex. The comparison with the work of Buter and Rizzerta are shown in Figure
6. Again good agreement is seen with the full Navier-Stokes calculations. As was seen in
the previous comparison, the thin-layer calculatons exhibit more total pressure loss, but the
crossplane velocities and the wing surface pressures agree well. The present study exhibits
a little less development in the secondary separation region than do the full Navier-Stokes
solutions as seen in the surface pressure plot.

The streamwise development of the leading edge vortex is given in Figure 7.
Traveling from the nose to the trailing edge, the vortex is seen to strengthen. This is
marked by a decrease in pressure of the primary vortex core and an increase in the
crossplane velocities. Also from the crossplane velocities, the formation and strengthening
of the secondary separation is seen, although this is not significant until aft of 60 percent of
the wing length. Upon closer examination of the crossplane velocities, it is noted that the
center of the vortex and gross features of the flow do not change rapidly in the streamwise
direction. Although the flow is not truly conical, it is changing slowly enough that
ignoring the viscous effect will not significantly affect the overall flow field structure. The
same trend can be seen in the surface pressure plots of Figure 8. The primary vortex is

seen to increase in strength with aft movement.
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Cranked Delta Wing
The configuration chosen for this study was that tested by Henke (31) and is shown

in Figure 9. It has an 80° leading edge sweep forward of the crank and is followed by a
69° swweep. The crank occurs at 40 percent of the body length. The wing has a wiangular
cross section with a flat upper surface and sharp leading edges. The angle between the
upper and lower surfaces is 40° and this resulits in a relatively thick body at the trailing
edge.

An algebraic grid generator was also used to fit a grid around the cranked delta
wing. The grid generator was originally written to generate grids for delta wings and has
been modified by the author to generate grids for cranked deita wings. Appendix F
contains the listing of the grid generator used for these calculations. The grid consists of
127,400 points, 28 in the streamwise direction, 65 in the spanwise direction, and 70
normal to the body. A typical streamwise grid plane is shown in Figure 10. As can be
seen from the figure, points have been clustered at the body surface and the wing tp. The
grid consists of 41 points on the wing surface in the spanwise direction and 25 points in the
streamwise direction. In addition to clustering at the nose, points were clustered in the
vicinity of the wing crank. This was necessary because of the large changes in the flow,
resulting from the start up of the crank vortex. As before a branch cut is used to allow for
an H grid topology. Since the freestream Mach number is supersonic, there is no signif-
icant signal propagation from the wake region, therefore the domain ends at the wing
trailing edge.

The first plane of the grid on the body is located at x/1=0.05 from the apex of the
delta wing. It was found that placing a plane of data farther forward than this caused the
program to crash. It is thought that the points become compressed in the 1j-{ plane and this
causes large unsmooth variations in the metrics. The correction to this problem was to

move the initial plane rearward and open up the 1-{ plane.
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The configuration chosen was for a freestream Mach number of 2.5 and an angle of

attack of 10 degrees. This angle of attack was chosen because it was thought to be high
enough to develop stable vortical flow. The freestream Reynolds number is 686,000 and
the wind tunnel stagnation conditions are 10 psia and 20° C.

Figure 11 shows the development of the Pitot pressures and cross plane velocities
along the wing. The flow over the wing in front of the crank is similar to that found on
straight delta wings. From the crossplane velocity plot, for a streamwise location of
x/1=0.398, it is seen that the center of the primary vortex is located at approximately 50
percent of the wing span. The location of the vortex center remains fairly constant with
streamwise location. This was also true for the flow over the 75° delta wing that was
shown previously. In addition to the primary vortex structure, there was also a secondary
structure located at about 85 percent of the wing span.

Moving aft of the crank, a second vortex forms at the wing crank. This second
vortex can be seen in the piots of Figure 11, at a wing location of x/L=0.414. The vortex
center is located at approximately 85 percent of the wing span. The area of secondary sep-
aration seen in front of the crank, has started to diminish. Moving aft on the wing
(x/L=0.453) shows no evidence of the second vortex. The vortex generated at the crank
appears to become paired with the first vortex and the secondary vortex has now com-
pletely disappeared as a seperate identity. Finally, looking at a plane well aft of the crank ,
x/L=0.88, an area of low Pitot pressure has formed between the first vortex and the wing
leading edge.

The vortex location is seen not to change with streamwise location in front of the
crank but this is not true aft of the crank. Figure 12 shows a comparison between the flow
in front of the crank and well downstream of the crank. Aft of the crank the vortex center
is seen to move inboard and towards the wing surface. The area of secondary separation

present in the flow in front of the crank has been replaced by an area of low Pitot pressure.
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The surface pressures show that the overall magnitude of the pressure is approximately the
same for both planes. The primary difference is that the flow over the cranked portion
must negotiate a larger pressure gradient than the flow in front of the crank.

Figure 13 shows a comparison of the upper surface pressures with experimental
data. The upper surface pressure exhibits the same end as the experimental data but is

about 10 percent less for the outboard wing section. It appears that the grid may be too

coarse in the spanwise and normal directions to adequately resolve all the details of the flow

field.
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Figure 11. (cont)
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Figure 12. Comparison of Pressures Upsream and Downstream of the Crank
Pitot Pressures x/L=0.398 (upper), x/L=0.88 (lower)
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V Conclus IR fat

The Thin-layer Navier-Stokes equations were shown to be capable of reproducing

both the primary and secondary structures of vortical flows. For flow over a straight delta
wing, good agreement was obtained with the full Navier-Stokes solutions of Buter and
Rizzetta. The present study did exhibit slightly more Pitot pressure loss than either the
experimental data or the full Navier-Stokes solutions.

The cranked delta wing exhibited flow similar to a straight deita wing for locations
upstream of the crank. Vortex location did not vary greatly with streamwise locaton. A
second vortex formed at the crank and then quickly became paired with the first vortex.
Moving downstream the vortex center moves inboard and towards the wing surface. The
secondary separation present upstream of the crank has been replaced by an area of low
Pitot pressure. The magnitude of the wing surface pressures are approximately the same
for the flow fore and aft of the crank. The major difference is the flow downstream of the
crank must negotiate a larger pressure gradient than the flow upstream of the crank.

Grid resolution appears to be critical when trying to calculate vortical flows. Itis
necessary to cluster points not only normal to the body but also in the spanwise direction
near the leading edge. This is required in order to accurately resolve the large gradients in
the  direction. The result of insufficient numerical resolution is degraded definition of the
secondary vortical structure or even a failure to resolve the primary structure. For a delta
wing the grid can be fairly coarse in the streamwise direction as long as the vortices are
stable. If the flow becomes unsteady, such as with vortex bursting, then the resolution in
the streamwise direction should be fairly fine. The above is only true when there is little or
no trailing edge effects propagating upstream. The cranked delta wing will require a fine
grid in the streamwise direction due to the flow changing downstream of the crank.

The use of the Solid State Disk (SSD) allows for the use of grids that require more
computer memory than is available. The accuracy of the solution is not affected when




using the SSD. The main drawback to using the SSD with the ARC3D code seems to be

the amount of input/output required. If the input/output can be better optimized this would
reduce the required central processor unit time and also reduce the job cost.
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f verni ion

The governing equations can be transformed from Cartesian coordinates (x,y,2,t)

into generalized coordinates (§,n,{,t) by the following transformation

T=t
€ =&(x,y,2,1)
n =1(x,y,z,) (A1)
¢ =C(x,y,z,1)

Using the chain rule, the Cartesian partial differentials can be written in terms of the

transformed coordinates
aC o
_B____?Ei aéa a—"-—a— _Q___a1+§,a§+n.a,,+§,a;
d otdr ook don A
_8__21:_3 aga a_n_i i‘ii_gxaémxaﬁgxa;
ox Oxdt dx9E oxom oxal
i Cu) aéa ana a—g—a——éyaé*‘“yan*CyaC (A2)
dy ayar aya§ dy an  dy a
o of 9
i:é_a_.}.a_gi m— —g——izaé*'ﬂzan“'cZaC

0z dzdt 9zdf odzom 09z d(

Applying Equation A2 to Equation 3 yields

3:Q + IEQ + EE + &yF +E,G) + 3,(n.Q + N,E+ 1,F +1,G) +
ICiQ + GE + yF + £,G) = Re~1[3{EEy + £,F, + £,G, ) +
on(n:E, + NyFy + n,Gy) + a;(CxEv +CyFy + Cva)] (A3)




the metrics appearing in the above equation are defined as

Ex=1 (Ynzc - Ygzn)
&y =1 (zqxg = xnzt)
E2=J (xqyg - yaxg)
N =J {zgy - vex)
ny =3 (xezg = x¢2)
me =3 (yexg ~ xeye]
Cx =3 (yzg - zeyn)
Ly =3 {xnzg = xc2)
Lo =3 (xeyn — yexn)
&=~ xebx ~ y&y ~ €2
M=~ X4Tlx = YMly = 21z
o=~ xelx = yely - 2Lz

where ] is the Jacobian of the transformation and is given by

J=1/1-1

1000

-1 = Axy.zt) | XeXE XXy
Aen.Lt) | veveynye
a3 I 2

J71 = Xpynze + XpYezn + XqYg2e - XeYe2y - XnYeZe - XgYnZe

SS

(Ad)

(AS)

(A6)

(A7)




If the transformation is a result of grid generation then the metrics and the Jacobian can be
computed numerically using central differences.

Vinokur (48) showed that the governing equations can be transformed into strong
conservation law form, by first dividing Equation A3 by the Jacobian and then using the

chain rule to bring the Jacobian inside the differental operators. Equation A3 becomes

g(g +i(m+axE+ayF+§zG)+_a_(mQ+an+nyF+nzG)+
ot \J ok J am J

afeazsesssse)-qfg] 3 (3ol (3] -l

-l -l B - (- lemesr=se):

. ﬂnxsvm,fvm,cv% :z(cxxv+g§v+czcv)+E[( )a (nT) (_)
ool (Lol BB

the last four terms on the left hand side and the last three terms of the right hand side are

known as the invarients of the transformation. It can be shown, by using the definition of
the metrics, that these terms are zero (32:6).
The contravarient velocities U, V, and W are defined to be the velocities in

directions normal to planes of constant &, 1, and { respectively and are given by

U=§& +&u+Eyv+Ew
V=" +MNxu +NyVv + MW (A9)
W=+ xu+lyv+lw

- .




Applying these definitions to Equation A8, Pullian (38:159-160) showed that the governing

equations written in strong conservation-law form and generalized coordinates are given by

3:Q + %E + 3F + 3,6 = L (&, + 3, F, +3,G.)

U
puU + Exp
pvU + &yp
pwU + &,p

| (e+p)U +&;p |

*13)

=J'l

p
~ pu
Q=J-1 pv
pw
[

pv
puV +m,p
pvV +mnyp
pwV +1n,p
| (e+p)V +nip |

)
"

0
Extax + EyTxy + &2Txz
ExTyx + GyTyy + &;Tys
Extax + &yTay + &1Tp2

L &xBx +&yBy +&:B.

0
NxTxx + NyTxy + NzTxz
MxTyx + NyTyy + Nzyz

NxTzx + NyTzy + NzTzz

'
—

L MxBx + nyﬁy +MBz
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(A1D)
(All)
oW
puWw + Cp |
pvW + {op (Al12)
pwW + (,p
\_(e+p)w + C(p
(Al13)




i 0 i

CxTax + Cytxy + axz
G =1-!

GV - J Cxtyx + Cytyy + Cztyz
CxTex + Cy’tzy + C7Tzz

L CuBx +GyBy + 8B |

Bx = 'Y“-Pr_l Ox€i + UTyx + Vigy + Wiz
= -1
By = YUPr~! oyei + uTyx + VTyy + WTy,

Br= YHPr™' 0sei + UTyx + Vigy + Wiy

and the cartesian derivatives become

ux = Exug + Nxuy + Ceue
uy = §yug + Tyuy + Lyug
u, = Ezug + Nauy + Goug
Vx = Exvg + NxVy + Lave
vy = Eyve + Nyvy + Gyve
vz =&V + Navyy + Gove

W = B + Moy + Lo

wy = Eywe + Nywp + Lywe

Wy = ézwg + lewn + Czwg

S8

(Al4)

(A15)




Appendix B: Flux Jacobian Matrices
Pulliam has shown ( 32:99-100) that the invisicid flux Jacobians, A, B, and C, are

obtained by time linearizations of the inviscid flux vectors, E, F, and G, and are given by

>
]

8>‘?r1)>

==}
"

ISES

& £
EQ°—uBy G+ 8y —Efy~2)u
EO -vO  Ew-Eyly- 1l
£ -wO1  Ew—E(y-1l)u

~0lyeip-20%)  Eaw-(y-1)u8,

& &,

Ezu—Ex(y-1)w

Eav —~ Ey(y - 1)w
&+ 6, -&(Y-2)w

& — (v~ 1)wb,

Gyu — &y - 1)v
&+ 8, - Gyly-2)v
Eyw — & (Y- 1)v
Eyw— (Y- 1)ve,

Mt Tx
M0 ~ubzy Mo+ 6y —Ny(Y—2)u
Mo -v8y M -Ty{Y- u
N0’ ~why  Mew-Ty- 1
~0alyelp-207) My - (y-1)ud,

My M2
Nyu =Ny~ 1)v N = Mx(Y~ 1)w
M+ 02-My(y-2lv  Mv-ny(y-1)w
MyW =N (Y= 1)v M+ 0y =1, (Y- 2)w
My~ (Y- 1)v6, My - (Y- 1)wl;
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Sx{y-1)
Ey(y-1)
(Y- 1)
& +70;

Nx(Y—-1)
ny(y-1)
(Y- 1)
N+ 702

(B1)

(B2)




G Cx
~ Cx¢2 - uf3 Co+ 03 - Luly-2)u
¢=9G_ 2
aﬁ Cyd™ —vO, Cxv - Cyly—1u
L' -whs  Caw=Cufy-1u
—6slyelp -207) Loy (v 1)uds
C-'Y C.»z 0 1
Cyu - Culy-1)v L - Cx(Y— 1w Cx(y -1)
G+ 63— Cy(Y" 2)v Cev - Cy(Y' 1)w cy('Y’ 1) (B3)
Cyw =Cafy-1)v Ci+ 03 -Coy-2)w CY-1)
Cyw—(y-1)v6; Gy — (Y- 1)w0; Cu+ Y03 B
where
Y (B4)
y=1e/p-9° (BS)

81 =&+ &yv + Ew
B2 = Nxu + Nyv + MW (B6)

03 = {yu + {yv + Cow

The viscous flux Jacobian (M) is obtained from the linearization of the viscous flux

vector (S). Using a Taylor series, Steger has shown the Jacobian is given by (43:3-4)

]
60 ﬂ
|




0 0 0 0 0
my a,Sg(p'l) azﬁg(p“) agﬁg{p") 0
ﬁ=é§—= my  adep?) aaddp!) asdelp!) 0
" my  asde{p!) asdp!) aedpl) 0
| mg ms; ms3 mss  aodefpt) |

my) = oy 8¢(-u/p) + cadg(—v/p) + a3d¢(—wip)
m3; = 028¢(—u/p) + 0tade(—Vv/p) + ausdy(—w/p)
my) = o3dg(-u/p) + asd—v/p) + oede{—w/p)
ms) = o1 8¢{-ud/p) + 0ta8g(-2uv/p) + a3de(—2uw/ip) + asde(-v¥/p) +
a6bg{—w2/p) + ctode|~e/p?) + codef(u? + v2 + w2Yp]
ms2 = ~my; — olod¢(w/p)
ms3 = —m3; — co¢(v/p)

ms4 = —my; — ed¢(W/p)

ap = yuPr (g2 + & + )
o = W@ + G+ ¢l
oy = (W3)Cx Gy
oy = (W3)C, &,
o = p[c2 + @+

as = (U/3)Cy &,
o = W[ + 2+ @3

(B7)

(B8)

(B9)




Appendix C: Flux 1 igenval nd Eisenvector Matrices

Warming, Beam, and Hyett (44:1037-1041) have shown that the invisicid flux
Jacobians can be diagonalized since they have real eigenvalues and a complete set of
eigenvectors. The flux Jacobians are written in terms of their eigenvalues and eigenvectors

as

Kn =(T§A§T£1 "
B =(ToA, T3 (C1)
"= (TQACTEI "

where T¢ is the eigenvector matrix of A and likewise T, for B and T¢ for C. The

eigenvalue matrices are given by

o OO
SO OO

(C2)

t\c =

>

= |

"
Co0o¥ ococooco< ocoooC
coo¥Eo oco<co ococooCo
co¥oo ocoo<coo ocoCoo

where a is a characteristic speed and

a=(e2+e2+ed)”
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k2 =(nZ +nE+n2)'? (C3)

s ={Z+ 2+ )"

The eigenvector matrices are

| & 3
_ &x‘i éy‘i“ézp
TF: = Ex‘”‘ézp _ gyv~
&xw—iyp &yw"‘éxp -
L [gx¢2/(7’l) + p(gzv —gyw)] [qu)z/(y— 1)+ P(Exw —&ﬂl)]
gz x o
gzu+gyp a(u+§xa, a(u—%xa)
E,v-Exp a‘v+§ya) a(v—éya)
Ew o|w+E) o|w-L.2)
[Etv-1) + plyu-tuv)] alle? + a2ir-1)+ 81a] olfo® « a2diy-1)-61a] |

p—

ﬁx ﬁ)’
'ﬁxu ﬁyU-ﬁzp
Ty = ﬁx‘”‘ﬁzp ﬁyv
ﬁxw ‘ﬁyp ﬁyw + ﬁxp
~ 2 ~ o~ ~ 2 ~ ~
| FoMr-1) + plFv-A,w)) [R,0%7-1) + p(Rew-miou)

N o o
Nu+M,p o(u+na) o(u-"sa)
NV—TxpP a(v+nya) a(v-nya) (C4)
nw o(w+n,a) o(w-n,a)
Foor-1)+ plyu-rer)]  ollo? +a2liir-1)+ 88 allo® + aity-1)-020]
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2 23
L _ C.»x‘i Cy‘i_Czp
T;= C,v+§zp _ Cyv~
o Gw=Gyp o Gywelp
L [Cxq’z/(Y—l) + p‘CzV“C.yW)] [qu’z/(Y— 1+ p(CxW—CzU)]
%, o o |
Lty alu+t.a) alu-L,a)
Lv-Lo alv+t,a) alv-Lya)
Ezw a(w "'Eza) a(w —Zza)
Z.6%1-1) + plEyu—torl] oflo? + a2)ity-1)+ 83a) all6? + a2biiy-1)-63a] |

i gx‘l—¢2/a2)—@zv-€!w1/p _ Ex(Y"l)“/ai
gy(1—¢2/a2)—(§xw—§zu»p éy(v~1)t1/a2+§x/p
T = &l 1—¢2/'a2)—@yu—§xv)/p &AY-1jw/a?+&,/p

plo*~61a) Bt~ 1hu-Ena
L ple*een) Bt

Ely-1via2+&,/p  Exly-Uw/a~Lylp ~Ex(y-1y2?
Efdr-1 )v/ai éy(l— 1)w/a2+&,/p -éy(y— 1)/a2
EAy-1Viat+Edp  Efy-l)wia? ~Efy-1)a2
Bly-1v-ta]  Bllr-1w-E.a] B(y-1)
Bll-1v+ya]  Blly-1w+Eeal By-1) ]
| Al1-6%a2) - (Fv-T,wp Ry 1
Al1-0%ad) - (Maw-Ta)p  Tylr—1)wal+nup
Ty =| -’ -(Mu-Rodp  Mdv-iwateip

B(¢2—9~2a) —Bly-1u-n.a
i Blo™+65a) —By-1ju+,a
by




Niy-1v/a2+n/p Nly-1w/a-Mylp  —nyly-1ya
NfY-1v/a2  Tly-Uwa2+Tgp  —y-1)a2
MdY-1va2+Ndp  NAy-1)w/a? ~ndy-1)a?
-Blly-1v-nya]  —B(y-1)w-nza] Bly-1)
—Blly-1v+nya]  —Bl(y-1)w+n.a] B(y-1)
i gx( 1 —¢2/ az) - (gzv"glwll P _ Zx('Y‘ 1 )"/33
o Sy( 1 “¢2/ a2> - ‘Exw ‘Szul/P Sy(Y— 1)u/a%+ EX/P
T Gl -[Gu-tode  Tiv-nweelp
plo*~03a) Bly-1u-La
L B(¢2+ 933) —By-1u+a
Gly-viatetp Llr-ihwat-Lip  Liy-1)a2
LS R S YV S N (R
Clv-1via+Llp Cly-1)wra? ~C{y-1)a?
Bllv-1h-tya]  -Hly-1)w-L.al Bly-1)
Blly-1v+gya]  Blly-1)w+L.a] Bly-1)
where
T & 7 & > & T e
éx = E;‘ &y 'Ef‘ gz = H 0, = ;(—1'
~ _Mx ~ 1N ~ Mz a _0
M=l WEo M= 6= 12
PO x > € . _ Cz P
Cx—g Cy—‘é‘ Cz—g 93—;3
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ndix D: In-Core V li Disk Comparison
The use of the solid state disk allows for the calculations to be performed on grids
that require more computer memory than is available. The purpose of this appendix is to

evaluate the overhead associated with using the solid state disk. The code was run for 50

iterations in order to get a representative feel for differences in central processor unit (CPU)
times, input/output (I/O) requirements, and job size.

A grid was generated for a delta wing that was small enough to fit entirely in the
core of the Cray XMP-12 computer. The grid consisted of 32,000 points which is about
the maximum number of points that can be processed at one time. The grid had 20 points
in the streamwise direction, 40 points in the spanwise direction, and 40 points in the
normal direction.

The accuracy of the solution is not affected by the choice of methods. The only
difference in the operation of the code is, the solid state disk loads and unloads planes of
data as needed for calculations. This resulted in a 40 percent increase in CPU time. This
number will vary depending on the number of data planes that are processed per iteration.

The in-core run required a job size of 1,420,000 words to execute. This used
approximately 80 percent of the available core memory. The SSD run required 260,000 -
words of core to execute. The problem encountered when running a job that requires a
large block of core memory is that the job may sit for extended periods. The in-core job sat
for almost 30 hours, while the out-of-core job sat for about 5 minutes, and was finished in
about 30 minutes.

The last area examined was the cost of running the job. The in-core cost was $40
dollars, while the out-of-core jobcost was $375. It is believed that this cost is due to an
input/output charge. The SSD made almost 250,000 I/O requests, while the in-core had
150. If this is the case, then using the SSD may become prohibitive from a financial point

of view.
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\opendix E: Local Apolicat

This appendix contains the job control language and parameter input files necessary
to run the ARC3D code on the Cray XMP-12 computer at Wright-Patterson AFB,Ohio.
The first file is used for compiling the code and storing it on the Cray. The second file is
the file used for submitting a job to the Cray. The code will look for three files before it
begins execution, 1) a restart file, if requested, 2) a grid file, and 3) a parameter input file.
The third file is an example of a parameter input file. Upon termination the program returns
a restart file and a parameter output file. Due to large amount of CPU time required, the

code was run in batches of 200 time iterations.

e e e 2 2u 3¢ 2 29 2 3k age 3 e 2 e 200 e 2 e ek Fﬂe To Compﬂe ARC3D COde e e e 2 3 29 2 26 2 2 24 o 2 e afe 3 3 o o 2 2 e 3k ok

JOB,IN=CRANKCMP,T=50,MFL=150000. SMITH-AFIT/ENY -54731
ACCOUNT,AC=xxxxxxx,APW=xxxxxx,US=xxxxxxx,UPW=xxxXXX.
%

. THIS FILE IS USED TO COMPILE THE ARC3D CODE ON THE CRAY XMP
. A COPY OF THE COMPILED PROGRAM IS STORED ON THE CRAY.

. PURGE THE PREVIOUS COPY.
ACCESS,DN=ARC3D,ID=D880165,UQ.

DELETE,DN=ARC3D.
RELEASE,DN=ARC3D.
ok

* ¥ ¥ ¥

*

*_ GET SOURCE CODE FROM THE CFS.
b

Fi:'.TCH,DN=CODE,SDN=ARC3D,MF=CB,DF=CB KA
TEXT='SREAD,ARC3D,ARC3D.CTASK,ALL."

z.' COMPILE CODE AND WRITE TO BINCODE
S.FT,I=CODE,B=BINCODE,ON=Z,OPT=FULLIFCON,MAXBLOCK=4000,L=O.
:.' SAVE EXECUTABLE ON THE CRAY
§AVE,DN=B1NCODE,PDN=ARC3D,ID=D880l65.

. SEND BACKUP TO THE CFS

. DISPOSE,DN=BINCODE,SDN=ARC3DEXE,MF=CB,DC=ST,DF=TR,

. TEXT="CTASK,ALL.SWRITE,ARC3DEXE,ARC3DEXE'.
[EOF

*
*
*
*
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e e 208 3o 28 2 e 206 206 2 28 3 s 2 o 2 e e a0 o 2 3 o e 20 ARC3D Input File ke 20 20 2k e 3¢ 2 2 2 e ale e 2 2 2 e e ok ke e e ke e 2 e 20 2 ok

JOB,JN=CRANK,T=1600,MFL=500000,SSD=11000,CL=P2. SMITH/54731
ACCOUNT,AC=xxxxxxX, APW=xxxxxx,US=xxxxxxx,UPW=xxxxxx.

*

. THIS FILE RUNS THE ARC3D COMPUTER CODE ON THE ASD
. CRAY XMP USING THE SOLID STATE DISK.

*
*
* .

* SET UP FILES ON THE SSD.

*

ASSIGN,DN=FT11,DV=SSD-0-20,RDM,U.
ASSIGN,DN=FT12,DV=SSD-0-20,RDM,U.

3

* GET THE RESTART FILE FROM THE CFS.
*

FETCH,DN=RESTIN,SDN=RESTIN,MF=CB,DF=TR A
TEXT='SREAD,RESTIN,RESTIN.CTASK.ALL.".
*

*. GET THE GRID FROM THE CFS.
€x*

FﬁTCH,DN=GRIDIN,SDN=BNGRID,MF =CB,DF=TR*
TEXT='SREAD,BNGRID,BINGRID.CTASK,ALL."
*

* GET INPUT FILE FROM THE CYBER.
*

FiiTCH,DN=PARAIN ,SDN=PARAIN,MF=CB,DF=CB,*
TEXT='GET,PARAIN.CTASK,ALL."
*

*. GET COMPILED ARC3D CODE FROM THE CRAY.
*

A'CCESS,DN=$BLD,PDN=ARC3D,ID=D880165.
OPTION,STAT=0ON.
*

*. LOAD AND RUN.

* .

LDR.

* .

*_ SAVE THE RESTART TO THE CFS.

*

D.ISPOSE,DN=RESTOUT,SDN=RESTOUT,MF=CB,DC=ST,DF=TR,DEFER,"
TEXT='"CTASK,ALL.SWRITE,RESTOUT,RESTOUT".

. SAVE THE GRID OUTPUT TO THE CFS.

. DISPOSE,DN=GRIDOUT,SDN=GRIDPLOT,MF=CB,DC=ST,DF=TR,A
. TEXT="CTASK,ALL.SWRITE,GRIDPLOT,GRIDPLOT".

. BATCH PARAMETER OUTPUT FILE TO THE WAIT QUEUE.

* % ¥ ¥ W * W

*

D.ISPOSE,DN=PAROUT,SDN=PAROUT,MF=CB ,DC=ST,DF=CB,DEFER,*
TEXT='CTASK,ALL.ROUTE,PAROUT,DC=WT,UIN=PAROUT,UN=D880165.".
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*

EXIT.

DISPOSE,DN=RESTOUT,SDN=RESTOUT,MF=CB,DC=ST ,DF=TR,DEFER *
TEXT='CTASK,ALL.SWRITE,RESTOUT,RESTOUT".
DISPOSE,DN=PAROUT,SDN=PAROUT MF=CB,DC=ST,DF=CB,DEFER.»
TEXT='CTASK,ALL.ROUTE,PAROUT,DC=WT,UIN=PAROUT,UN=D880165.".

DUMPJOB.
DEBUG.
*

JEOF

e 3 2 2 36 o o 2k 3o 3 2 e e e 2 e 2o 2 e ke e Parameter Input File e 2 e e e e 2 2 s e e afe e 24 e 24 e e e 2 2k ke e ok

F
28,65,70
TT
TTF

50

TF
TF

686650, 0.72, 234.4
2.5,10.,0.

wh W
=Y=Y=
eee
e B B |
(N R ]

-

125329

o

]
3

/EOF

INCORE(T/F)

JMAX,KMAX,LMAX

RESTART,STORE

READGRID ,READALL,WRITGRID

NP

PJLINE (ENTER NJLINE(<11), THEN EACH PAIR OF K,L))
NJLINE

JLINK(NI),JLINL(NJ)

PKLINE (ENTER NKLINE(<11),THEN EACH PAIR OF J,L)
NKLINE

KLINJ(NK),KLINL(NK)

PLLINE (ENTER NLLINE(<11),THEN EACH PAIR OF J,K)
NLLINE

LLINJ(NL),LLINK(NL)

IFSCOR,METAV

VISCOUS, TURBULNT (IF VISCOUS THEN ENTER
RE,PR,TINF)

RE,PR,TINF

FSMACH,ALP,YAW

METH

ISPEC ARTIFICIAL VISCOSITY STUFF
DIS2X,DIS4X

DIS2Y,DIS4Y

DIS2Z,DIS4Z

IVARDT 0-CONST 1-VARIABLE TIME STEP
PERIODIC IN K

IBC(IF IBC=3 THEN ENTER JTAIL1,JTAIL2)
(THERE IS NO 4!!)

KEDGE LSURF JSTART JEND IBC=4 STUFF
CLENGTH (CHECK THIS NUMBER)

IORDER

NUMDT (NUMBER OF TIMESTEP SEQUENCES TO
FOLLOW)

DTSEQ(,ITERDT() (TIME STEP AND NUMBER OF
TIMESTEPS)
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lix F : Aleebraic Grid G

This program was originally written by Dr. Phil Webster of the Air Force Flight
Dynamics Laboratory to generate a grid for a delta wing. It has since been modified by the
author to generate the grid for a cranked delta wing. A branch cut between the upper and
lower surfaces of the body allows for the use of an H grid. This approach was used to
eliminate the small radius of curvature generated at the leading edge using a C grid. Points
are clustered in high gradient areas using an exponential stretching function. There is no
provision for a wake region, therefore this code is only used to generate grids for

supersonic flows.

PROGRAM DELGRD
C
C THIS PROGRAM WAS MODIFIED TO CLUSTER POINTS AT THE WING
C LEADING EDGE BY USING ELLIPSES FOR THE UPPER AND LOWER
C BOUNDARIES OF THE DOMAIN. FRS 8 AUG 88
C
C THIS PROGRAM WAS MODIFIED TO GENERATE A GRID FOR A CRANKED
C DELTA WING CONFIGURATION. FRS 28 AUG 88
C
C PROGRAM GENERATES A GRID (HOPEFULLY) TO FIT THE DELTA WING
C MODIFIED FOR A DELTA WING WITH NO WAKE REGION
C
CDIR$ NOVECTOR
REAL LEN
COMMON X(28,65,70),Y(28,65,70),Z(28,65,70)
LOGICAL LSTOP,LCHECK,LCRANK
LCHECK = .TRUE.
LSTOP = .FALSE.
LCRANK =.TRUE.

OUTPUT FILES FOR IRIS (MUST BE COMMENTED OUT)

OPEN (UNIT=10,FILE='GRID.BIN,FORM="BINARY")
OPEN (UNIT=9,FILE='GRID.DAT")

C FILES FOR THE KIRTLAND AFB CRAY
C

plelelviple!

OPEN (10,FILE='CGRID',STATUS='NEW',FORM="UNFORMATTED")
IF (LCHECK) OPEN (9,FILE='CKGRID',STATUS='NEW/',

& FORM="FORMATTED")

PI = ASIN(1.0) * 2.0

LEN =.100
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C

ALPHA =100

ALPHA = (ALPHA / 180.0) * P1
OMEGA =40.0

OMEGA = (OMEGA /180.0) * PI
DELTA = 1.0E-3 * LEN
XSTART =0.05 * LEN

XEND = XSTART + LEN
XTOTAL = XEND

JSTART =3

KMID =4

C INPUT GEOMETRY FOR DELTA WING

C

C

IF(.NOT.LCRANK)THEN
SWEEP = 80.0
SWEEP = ((90.0 - SWEEP) / 180.0) * PI
BASE = LEN * TAN(SWEEP)
XMID = XSTART + 0.90 * LEN

NJ =30
JMID =28
JEND =30
=55
KEDGE=34
NL=65
LSURF=21

C INPUT GEOMETRY FOR CRANKED DELTA WING

C

C

ELSE
XCRANK=.402*LEN+XSTART
SWEEP1=80.
SWEEP1=((90.-SWEEP1)/180.)*PI
SWEEP2=69.
SWEEP2=((90.-SWEEP2)/180.)*PI
BASE1=(XCRANK-XSTART)*TAN(SWEEP1)
BASE2=(XEND-XCRANK)*TAN(SWEEP2)+BASE1
XMID1=(XCRANK-XSTART)*.70+XSTART
XMID2=XSTART+.70*LEN

NJ=28
JMID1=8
JCRANK=13
IMID2=24
JEND=28
NK=65
KEDGE=41
NL=70
LSURF=25
END IF

IF (LCHECK) THEN
WRITE (9,*) ' DELTA WING LENGTH IS 'LEN
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IF(.NOT.LCRANK)THEN
WRITE (9,*) ' HALF THE WING ROOT CHORD IS ',BASE
THICK=BASE*TAN(OMEGA)
I%IEHE (9,*) ' ROOT THICKNESS IS ',THICK

E
WRITE (9,*) ' HALF THE WING ROOT CHORD IS '.BASE2
THICK=BASE2*TAN(OMEGA)
WRITE (9,*) ' ROOT THICKNESS IS ',THICK

Y(JLKL)=0.0
Z(JK,L)=00
1 CONTINUE
C
8 CONSTANTS FOR THE CALCULATION OF THE LIMITS OF THE DOMAIN
YMAX1 =0.15* LEN
ZMAXI1T =0.15 * LEN
ZMAXI1B = -0.15 * LEN
IF(NOT.LCRANK)THEN
YMAX2 =0.85 * LEN
ZMAX2T = 1.05 * LEN
ZMAX2B =-0.65 * LEN
ELSE
YMAX2 =095 * LEN
ZMAXZT =1.05 * LEN
ZMAX2B =-0.80 * LEN
END IF
XTOTSQ = XTOTAL * XTOTAL
XTOTCU = XTOTSQ * XTOTAL
C

C THE CONSTANT CURVE CONTROLS THE AMOUNT OF CURVATURE IN THE
C MAX AND MIN Z PLANES. CURVE MUST BE GREATER THAN OR EQUAL

C TO 0 AND LESS THAN 1. IF CURVE IS EQUAL TO 0 A RECTANGULAR

C GRID RESULTS. IF CURVE EQUALS 1 A SINGULARITY OCCURS AT

C Y=YMAX.

C

o CURVE=(.
CCCCCCCCCCCCCCCCCCCCCeeeeeeeeceeeeceeeccececeecceececc
C C
C XDIRECTION C
C C

CCCCCCCCCCCCCCeeeeeecececcceeccceeecceccececcceecceeccceececce
C

CDIST X POINTS ALONG THEL = LSURFAND K =1

C

C AHEAD OF BODY
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C

IF (LCHECK) WRITE (9,*)' X DIRECTION'
J=1
DO 9 K = 1,NK
DOS L =1NL
X(J,K,L) =0.0

90 CONTINUE

C

IF (LCHECK) WRITE (9,*) J.X(J,1,LSURF)

NUMB = JSTART - 1
DIST = XSTART
DETA = 1.0/ FLOAT(NUMB)
DX =20.0*DELTA
CALL FINDC(DX,DIST,NUMB,C,1)
DO 100J = 2,JSTART-1
JJ=JSTART -]
ETA = DETA * FLOAT({))
FAC = (EXP(C*ETA) - 1.0) / (EXP(C) - 1.0)
XTEMP = XSTART - FAC * DIST
DO99K=1NK
DO99L=1NL
X(J,K,L) = XTEMP

99 CONTINUE

IF (LCHECK) THEN
Q= (XSTART - XTEMP) / DX
WRITE (9,*) J,X{J,1,LSURF),Q
ENDIF

100 CONTINUE

C

J =JSTART
DO 101 K =1,NK
DO 101 L =1,NL
X(J,K,L) = XSTART

101 CONTINUE

C
C

IF (LCHECK) WRITE (9,*) I.X(J,1,LSURF)
[F(NOT.LCRANK)THEN

C FIRST SECTION OF BODY

C

NUMB = JMID - JSTART
DIST = XMID - XSTART
DETA = 1.0/ FLOAT(NUMB)
DX =15.0 * DELTA
CALL FINDC(DX,DIST,NUMB,C,1)
DO 110J =JSTART+1,JMID-1
JI=J-JSTART
ETA =DETA * FLOAT())
FAC = (EXP(C*ETA) - 1.0) / (EXP(C) - 1.0)
XTEMP = FAC * DIST + XSTART
DO 109 » = 1,NK
DO 109 L =1,NL
X(JK,L) = XTEMP
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109 CONTINUE
IF (LCHECK) THEN
Q = (XTEMP - XSTART) /DX
WRITE (9,*) J,X(J,1,LSURF),Q
ENDIF
110 CONTINUE
C
J=JMID
DO 111 K = 1,NK
DO111L=1NL
XJ,K,L) = XMID
111 CONTINUE
IF (LCHECK) WRITE (9,*) . X{J,1,LSURF)
C

C NOW FOR THE SECOND PART OF THE BODY
C

NUMB = JEND - JMID

DIST = XEND - XMID

DETA = 1.0/ FLOAT(NUMB)

DX =5.0 * DELTA

CALL FINDC(DX,DIST,NUMB,C,1)

DO 120 J = JMID+1,JEND-1
J]=JEND-J
ETA = DETA * FLOAT())
FAC = (EXP(C*ETA) - 1.0) / (EXP(C) - 1.0)
XTEMP = XEND - FAC * DIST
DO 119K = |,NK

DO 119L =1,NL
X({JK,L) = XTEMP
119 CONTINUE
IF (LCHECK) THEN
Q= (XEND - XTEMP) /DX
WRITE (9,*) 1,X{J,1,LSURF),Q
ENDIF
120 CONTINUE

C
J=JEND
DO 121 K=1,NK
DO 121 L=1,NL
X(J,K,L) = XEND
121 CONTINUE
IF (LCHECK) WRITE (9,*) J,X(J,1,LSURF)

C
C DO THE CRANKED WING
C
ELSE
C

C DISTRIBUTE POINTS FROM JSTART TO JMID1
C

NUMB = JMID1 - JSTART

DIST = XMID1 - XSTART

DETA = 1.0/FLOAT(NUMB)

DX =50.0 * DELTA
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CALL FINDC(DX,DIST,NUMB.C,1)
DO 125 J = JSTART+1.JMID1-1
JJ=J-JSTART
ETA =DETA * FLOAT(1J)
FAC = (EXP(C*ETA) - 1.0) / (EXP(C) - 1.0)
XTEMP = FAC * DIST + XSTART
DO 124 K = I,NK
DO 124 L =1NL
124 X{J,K,L) = XTEMP
IF (LCHECK) THEN
Q = (XTEMP - XSTART) / DX
WRITE (9,*) ], X(J,1,LSURF),Q
ENDIF
125 CONTINUE
J=JMIDI1
DO 126 K=1,NK
DO 126 L=1,NL
126 X({JK,L)=XMID1
IF (LCHECK) WRITE (9,*) J,X{J,1,LSURF)
C
C DISTRIBUTE POINTS FROM JMID1 TO JCRANK
C
NUMB = JCRANK-JMID1
DETA = 1.0/ FLOAT(NUMB)
DX =8.0 * DELTA
DIST = XCRANK-.5*DX-XMID1
CALL FINDC(DX,DIST,NUMB,C,1)
DO 130 J = JIMID1+1,JCRANK-1
JJ=JCRANK -]
ETA =DETA * FLOAT(J)
FAC = (EXP(C*ETA) - 1.0) / (EXP(C) - 1.0)
XTEMP = XCRANK-.5*DX-FAC*DIST
DO 129K = 1,NK
DO129L =1,NL
129 XJ,K,L) = XTEMP
IF (LCHECK) THEN
Q = (XCRANK-.5*DX-XTEMP)/DX
WRITE (9,*%) ], X(J,1, LSURF),Q
ENDIF
130 CONTINUE
C
J=JCRANK
DO 131 K=1,NK
DO 131 L=1NL
X(J,K,L) = XCRANK-.5*DX
131  X(@J+1,K,L) = XCRANK+.5*DX
IF (LCHECK) THEN
WRITE(9,*)J,X(J,1,LSURF)
WRITE(9,%)J+1,X(J+1,1,LSURF)
END IF
C

C DISTRIBUTE POINTS FROM JCRANK+1 TO JMID2

C




NUMB = JMID2 - JCRANK+1)
DIST = XMID2 - X(JCRANK+1,1,LSURF)
DETA = 1.0/ FLOAT(NUMB)
DX =8.0* DELTA
CALL FINDC(DX,DIST,NUMB,C,1)
DO 135 J = JCRANK+2,JMID2-1
JJ =J - JCRANK+1)
ETA =DETA * FLOAT())
FAC = (EXP(C*ETA) - 1.0) / (EXP(C) - 1.0)
XTEMP = FAC * DIST + X(JCRANK+1,1,LSURF)
DO 136 K = 1,NK
DO136L =1,NL
136 X(J.K,L) = XTEMP
IF (LCHECK) THEN
Q = (XTEMP - X(JCRANK+1,1,LSURF))/DX
WRITE (9,*) J,X(J,1,LSURF),Q
ENDIF
135 CONTINUE
C
J =IMID2
DO 137K =1,NK
DO 137L=1,NL
137 X(J,K,L) = XMID2
IF (LCHECK) WRITE (9,*) J, X(J,1,LSURF)
C

C DISTRIBUTE POINTS FROM JMID2 TO JEND
C
DX = 5.0 * DELTA
DO 140K = 1,NK
DO 140L =1,NL
X(J+1,K,L) = XMID2+0.08*LEN
X(J+2,K,L) = XMID2+0.18*LEN
140  XJ+3,K,L) = XMID2+0.30*LEN-DX
IF(LCHECK)THEN
DO 141 J=JMID2+1,JEND-1
Q=(XEND-X(J,1,LSURF))/DX
WRITE(9,%)J,X(J,1,LSURF),Q
141 CONTINUE
END IF
C
J=JEND
DO 142K = 1,NK
DO 142L = },NL
142 X K,L)=XEND
IF (LCHECK) WRITE(9,*)),.X{J,1, LSURF)
ENDIF
C
C CALCULATE THE LIMITS OF THE DOMAIN

C
L = LSURF
IF (LCHECK) WRITE (9,*) LIMITS YMAX ZMIN ZMAX
DO150J=1,NJ
XSQ = X(J,1,LSURF) * X(J,1, LSURF)
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XCU = XSQ * X(J,1,LSURF)
FAC1 =3.0 * XSQ/XTOTSQ
FAC2 =2.0 * XCU / XTOTCU
YTEMP = (YMAX2 - YMAX]) * (FACI - FAC2) + YMAX1
ZTEMPB = (ZMAX2B - ZMAX1B) * (FACI - FAC2) + ZMAXIB
ZTEMPT = (ZMAX2T - ZMAXIT) * (FACI - FAC2) + ZMAXIT
DO 148 L=1,NL
Y(J,NK,L) = YTEMP
148 CONTINUE
DO 149K = 1,NK
Z(J,K,1)=ZTEMPB
Z(J K.NL)=ZTEMPT
149 CONTINUE
IF (LCHECK) WRITE (9,151) J,X(J,1,1),Y(J,NK, 1),
& 72(,1,1),ZJ,1,NL)
150 CONTINUE
151 FORMAT (13,4E12.5)
CCCCCCCCCCCCCCCCCCCCCCCCCCCeceecceeeecececceececceececececce

C C
C Y DIRECTION C
C C

CCCCCCCCCCrCCCeeeeececeececeeeccececceccececcccececeeccececececcce
C

C DISTRIBUTE POINTS ALONG THE Y AXIS AT X = XEND

C

C

IF (LCHECK) WRITE (9,*) ' Y DIRECTION'

[F(.NOT.LCRANK)THEN

J=JEND

L =LSURF

K=1

YJKL)=0.0

IF (LCHECK) WRITE (9,*) K,Y(J,K,L)
C

C INNER SECTION OF WING
C
YMID = BASE * .10
NUMB = KMID-1
DIST = YMID
DETA = 1.0/ FLOAT(NUMB)
DY = 0.04 * DIST
CALL FINDC(DY,DIST,NUMB,C,1)
DO 180 K = 2,KMID-1
KK =K -1
ETA = DETA * FLOAT(XK)
FAC = (EXP(C*ETA) - 1.0) / (EXP(C) - 1.0)
Y(JK,L) = FAC * DIST
IF (LCHECK) THEN
Q=Y(U.KL)/DY
PCT = (YU,K,L) - YUJK-1,L)) / BASE
WRITE (9,%) K,Y(J,K,L),Q,PCT
ENDIF
180 CONTINUE
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C

K=KMID

Y(J,K,L) = YMID

IF(LCHECK) WRITE(9,*)K,Y(J,K,L)
C

C OUTER SECTION OF THE WING
c

NUMB = KEDGE - KMID
DIST = BASE - YMID
DETA = 1.0/ FLOAT(NUMB)
DY = 1.0 * DELTA / TAN(OMEGA)
CALL FINDC(DY.DIST,NUMB,C,1)
DO 190 K = KMID+1.KEDGE-1
KK = KEDGE - K
ETA = DETA * FLOAT(KK)
FAC = (EXP(C*ETA) - 1.0) / (EXP(C) - 1.0)
Y(K.L) = BASE - FAC * DIST
IF (LCHECK) THEN
Q= (BASE - YU.K,L)) /DY
PCT = (YO.K.L) - Y(JX-1,L)) / BASE
WRITE (9,%) K.Y(J K L),Q.PCT
ENDIF
190 CONTINUE
C
K = KEDGE
YU.K,L) = BASE
IF (LCHECK) WRITE (9,*) K,Y(,K,L)
IF (LSTOP) CALL EXIT
C
C BASED ON THE Y VALUES AT X = XEND DISTRIBUTE Y VALUES FROM
CX = XSTART TO XEND FOR K LESS THAN OR EQUAL TO KEDGE
DO 210 J = JSTART+1,JEND
FAC = (X(J,1LSURF) - XSTART) / LEN
DO 210K = 2.KEDGE
YTEMP = YUEND, K,LSURF) * FAC
DO 210L = I,NL
Y(.KL) = YTEMP
210 CONTINUE
C
CFOR THE REGION BETWEEN 0 AND XSTART WITH K LESS THAN KEDGE.
S
CY TO THE VALUE AT JSTART+1
C
JP=JSTART + 1
D0 2207 = 1,JSTART
DO 220K = 2,KEDGE
DO220L = I,NL
Y('K.L) = YUP,K,LSURF)
220 CONTINUE
C
C DO THE CRANKED WING X ﬂ
C

n .




C

ELSE

C DISTRIBUTE POINTS ALONG JEND

C

C

J =JEND

L = LSURF

K=1

Y(J,KL) =00

IF (LCHECK) WRITE (9,%) K,Y(J,K,L)

C INNER SECTION OF WING

C

YMID2 = BASE2 * 0.08
NUMB = KMID-1
DIST = YMID2
DETA = 1.0/ FLOAT(NUMB)
DY =0.10 * DIST
CALL FINDC(DY,DIST,NUMB,C,1)
DO 235 K = 2, KMID-1
KK=K-1
ETA =DETA * FLOAT(KK)
FAC = (EXP(C*ETA) - 1.0) / (EXP(C) - 1.0)
Y(J,K,L) = FAC * DIST
IF (LCHECK) THEN
Q=Y(JKL)/DY
PCT =(Y(J,K,L) - YJ,K-1,L)) / BASE2
WRITE (9,*) K,Y(J,K,L),Q,PCT
ENDIF

235 CONTINUE

C

K=KMID
Y(J,K,L) = YMID2
IF(LCHECK) WRITE(9,*)K,Y(J,K,L)

C OUTER SECTION OF THE WING

C

240 CONTINUE

C

NUMB = KEDGE - KMID
DIST = BASE2 - YMID2
DETA = 1.0/FLOAT(NUMB)
DY = 1.0 * DELTA / TAN(OMEGA)
CALL FINDC(DY,DIST,NUMB,C,1)
DO 240 K = KMID+1,KEDGE-1
KK = KEDGE - K
ETA = DETA * FLOAT(KK)
FAC = (EXP(C*ETA) - 1.0) / (EXP(C) - 1.0)
Y(J,K,L) = BASE2 - FAC * DIST
IF (LCHECK) THEN
Q=(BASE2- Y(JK,L))/DY
PCT =(Y(JK,L) - YJ,K-1,L.)) / BASE2
WRITE (9,*) K,Y(J,K,L),Q,PCT
ENDIF
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K = KEDGE

Y(JK,L) = BASE2

IF (LCHECK) WRITE (9,%) K,Y(J,K,L)
C

CBASED ON THE Y VALUES AT X = XEND DISTRIBUTE Y VALUES FROM
C X =XSTART TO XEND FOR K LESS THAN OR EQUAL TO KEDGE
Cc
DO 244 ] = ISTART+1.JEND
IF(J.LE.JCRANK) THEN
Y(J,KEDGE,LSURF)=(X(J,1,LSURF)-XSTART)*TAN(SWEEP1)
ELSE
Y(J,KEDGE,LSURF)=(XCRANK-XSTART)*TAN(SWEEP1)+
1 (X(J,1,LSURF)-XCRANK)*TAN(SWEEP2)
END IF
FAC=Y(J, KEDGE,LSURF)Y(JEND,KEDGE,LSURF)
DO 244 K = 2, KEDGE
YTEMP = Y(JEND,K,LSURF) * FAC
DO 244 L = 1,NL
Y(J,K,L) = YTEMP
244 CONTINUE
C
C FOR THE REGION BETWEEN 0 AND XSTART WITH K LESS THAN KEDGE,
SET ALL
CY TO THE VALUE AT IJSTART+1

C
JP=JSTART + 1
DO 246 J = 1,JSTART
DO 246 K = 2, KEDGE
DO246L = 1,NL
Y(J,K,L) = YJP,K,LSURF)
246 CONTINUE
END IF
C
C SET Y FROM KEDGE TO NK
C
DO 250J=1{,NJ
DIST = Y(J,NK,LSURF) - Y(JLKEDGE,LSURF)
DY = Y(J,KEDGE,LSURF) - Y(J,LKEDGE-1,LSURF)
NUMB = NK - KEDGE
DETA = 1.0/ FLOAT(NUMB)
CALL FINDC(DY,DIST,NUMB,C,1)
DO 250 K = KEDGE+1,NK
KK =K - KEDGE
ETA = DETA * FLOAT(XK)
FAC = (EXP(C*ETA) - 1.0) / (EXP(C) - 1.0)
YTEMP = Y(J,KEDGE,LSURF) + FAC * DIST
DO 250L = 1,NL
Y(JKL) = YTEMP
C250 CONTINUE

C DEFINE MAX AND MIN PLANES IN THE Z DIRECTION
C
DO 260 J=1,NJ




DO 260 K=1,NK
ZQJ,K,.1)=Z(J,K,)*((1.-(CURVE*Y(J ,K,1)/
1 Y(J,NK,1))**2)** 5)

Z(J,K,NL)=Z(J K,NL)*((1.-(CURVE*Y(J,K,NLY/

1 Y(J,NK,NL))**2)**5)
260 CONTINUE
C

CCCCCCCCCCCcececeeeceeeccecceceecceeccececeecceeeccecceccecccecce

C
C Z DIRECTION
C

CCCCCCCCCCCCCCCeeeeeecceecceecceecceeceecccceccceceeccecccece

C

C CALCULATE THE Z VALUES ABOVE THE SURFACE FROM THE ORIGIN

CTOXTOTAL

C
NUMB = NL - LSURF
DETA = 1.0/ FLOAT(NUMB)

FAC1 = DELTA * (X(JSTART+1,1,LSURF) - XSTART) /LEN

DO 28017 = 1,NJ
IF (J .LE. ISTART) THEN
DZ = FAC!
ELSEIF (J .LT. JEND) THEN
FAC = (X(J.1,LSURF) - XSTART) / LEN
DZ = DELTA * FAC
ELSE
DZ = DELTA
ENDIF
DO 280 K=1,NK
DIST=Z(J,K,NL)
CALL FINDC(DZ,DIST,NUMB,C,1)
DO 280 L = LSURF+1,NL
LL =L - LSURF
ETA = DETA * FLOAT(LL)
FAC = (EXP(C*ETA) - 1.0) / (EXP(C) - 1.0)
Z(J.K,L)= FAC * DIST
280 CONTINUE
IF (LCHECK) THEN
WRITE (9,*) ' Z DIRECTION'
J =JEND
K=1
DZ = Z(J,K,LSURF+1) - ZJ,K,LSURF)
DO 285 L = LSURF,NL
Q=Z(KL)/DZ
WRITE (9,*) L.Z(J.K,L),.Q
285 CONTINUE
ENDIF
C

C NOW FOR THE BOTTOM
C
S2 = TAN(OMEGA)

NUMB = LSURF - 2
DETA = 1.0/ FLOAT(NUMB)
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DO 290 ) = JSTART+1,JEND
DO290K =1,NK

CFIRST LOCATE THE Z VALUE OF THE BOTTOM SURFACE

C

C
IF(K.LT.KEDGE)THEN
B2 =-52 * Y(J,LKEDGE,LSURF)
Z(J,K,LSURF-1) = Y(J,LK,LSURF) * S§2 + B2
ELSE
Z(J,K,LSURF-1)=Z(J KEDGE-1,LSURF-1)
END IF
C
C CALCULATE THE LOCAL DELTA

C
FAC = (X(J,1, LSURF) - XSTART) /LEN -
DZ =DELTA * FAC
DIST = ABS(Z(J K,1) - Z(J,K,LSURF-1))
CALL FINDC(DZ,DIST NUMB,C,1)
DO 290 L = I,LSURF-2
LL=LSURF-L-1
ETA = DETA * FLOAT(LL)
FAC = (EXP(C*ETA) - 1.0) / (EXP(C) - 1.0) -
Z(J,K,L)=Z(J K,LSURF-1)-FAC*DIST
290 CONTINUE
C
C REGION BETWEEN 0 AND XSTART, Z VALUES ARE THOSE AT XSTART+1

C
JP=JSTART + 1
Z1 = Z(JP,1,LSURF+1) - Z(JP,1, LSURF)
22 = Z(JP,1,LSURF) - Z(JP,1,LSURF-1)
DZ=72-71
DO 310L = 1,LSURF-1
ZTEMP =Z(JP,1,L) + DZ
DO 310J = 1,JSTART
DO 310K = 1,NK
Z(JK,L) = ZTEMP
C3 10 CONTINUE
C OUTPUT LOOPS
C
C ARC3D LOOP
C
WRITE (10) NJ,NK,NL
DO999L =1,NL

* ('YQJ,K,L),J = 1N} K
* ((ZJ.K,L),J = 1,N)) K
999 CONTINUE
C
C WRITE OUT GRID PLANES FOR XYGRID PLOTTING

C
OPEN(11,FILE=JPLANE',STATUS='NEW',FORM=FORMATTED")
OPEN(12,FILE='KPLANE'STATUS=NEW',FORM="FORMATTED")




OPEN(13,FILE='LPLANE' STATUS='NEW' ,FORM=FORMATTED")
C
=JEND
b DO 1000 K=1,NK
DO 1000 L=1,NL
1000 WRITE(11,1030)Y(J,K,L),Z(J,K,L)
K=1
DO 1010 J=1,NJ
k DO 1010 L=1,NL
1010 WRITE(12,1030)X(J,K,L),Z(J,K,L)
L=LSURF
DO 1020 J=1,NJ
DO 1020 K=1,NK
1020 WRITE(13,1030)X(J,K,L),Y(J,K,L)
1030 FORMAT(2E15.7)
C
CIRIS LOOP
WRITE (10) NJ,NK,NL
WRITE (10) (((X(J,X,L),J = 1,N]),K = 1,NK),L = 1,NL),
& ((YQ,KLD),J=1NHK =1,
& (((ZJ,K,L)J = 1,NJ),K = 1,NK),L

CALL EXIT
STOP
END

C SUBROUTINE FINDC

C

%UBROU T'INE FINDC(DELTA,DIST,ICELL,C,IDIV)
=2.00

ETA = FLOAT(IDIV) / FLOAT(ICELL)

DIV =IDIV

DO 100I=1,20
EC = EXP(C)
ECM1=EC-1.0
ECD = EXP(C * ETA)
ECDM1 =ECD- 1.0
BOTTOM = ECM1 * ECD * ETA - ECDM1 *EC
TOP = DELTA - DIST * ECDM1 / ECM1
C=C+TOP/BOTTOM/DIST * ECM1 * ECMI

100 CONTINUE
RETURN
END

O O 000N
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Block 19

For thin, highly swept wings operating at moderate to high angles of attack, the
flow over the wing is dominated by the formation of leading edge vortices. These vortices
produce a minimum pressure and this results in an additional lift increment. This lift in-
crement is nonlinear with angle of attack and cannot be accurately predicted using present
design methods.

The thin-layer Navier-Stokes equations were used to calculate the flow over a
straight delta wing and a cranked delta wing. The straight delta wing was used as the test
case due to the availability of both experimental and numerical data. Results are compared
with this data in order to validate the numerical procedure. The computer code uses an im-
plicit, time marching algorithm developed by Beam and Warming. The solution is marched
in time until a steady state is achieved. The code is approximately factored and diagohal-
ized in order to reduce computational work. A solid state disk is used in order to allow for
the large grid needed for a three dimensional solution.

The thin-layer Navier-Stokes equations are capable of accurately calculating vortical
flows. The cranked delta wing exhibited flow similar to a straight delta wing upstream of
the crank. The vortex generated at the crank quickly became paired with the vortex from
the front of the wing. The vortex location aft of the crank changes with streamwise loca-
tion. The grid resolution is important when trying to calculate vortical flows, due to the
large gradients in both the spanwise and normal directions. The solid state disk can be
used to run problems that require more computer memory than is available. Optimization
of the program input/output should be done for running the code with the solid state disk in

order to reduce the central processor unit time and job cost.




